
CNT 4714: PHP – Part 1 Page 1 Mark Llewellyn ©

CNT 4714: Enterprise Computing

Fall 2008

Introduction to PHP – Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cnt4714/fall2008

CNT 4714: PHP – Part 1 Page 2 Mark Llewellyn ©

Introduction to PHP

• PHP is officially known as PHP: Hypertext Preprocessor and

is very rapidly becoming the most popular server-side

scripting language for creating dynamic web pages.

• PHP was created in 1994 by Rasmus Lerdorf (who currently

works for Linuxcare, Inc. as a senior open-source researcher)

to track users at his Web site. Lerdorf originally called it

Personal Home Page Tools in a package he released in 1995.

It eventually became an Apache Software Foundation

project.

• PHP2 featured built-in database support and form handling.

In 1997, PHP3 was released and featured a new parser which

substantially increased performance and led to an explosion

in PHP use.

CNT 4714: PHP – Part 1 Page 3 Mark Llewellyn ©

Introduction to PHP (cont.)

• PHP4 featured the Zend Engine and was considerably faster
and more powerful than its predecessors and further
enhanced the popularity of PHP.

• The current release is PHP 5.2.6 and features the Zend
Engine 2, which provides further increases in speed and
functionality. You can download the latest version of PHP at
www.php.net. For more details on the Zend Engine 2 see
www.zend.com.

• Today more than 17 million domains utilize PHP technology.

• All of the examples we’ll be looking at use the latest stable
version of PHP which is 5.2.6 and was released May 1, 2008.

http://www.php.net/
http://www.php.net/
http://www.php.net/
http://www.php.net/
http://www.php.net/
http://www.zend.com/
http://www.zend.com/
http://www.zend.com/
http://www.zend.com/
http://www.zend.com/

CNT 4714: PHP – Part 1 Page 4 Mark Llewellyn ©

Introduction to PHP (cont.)

• The power of the Web resides not only in serving content to

users, but also in responding to requests from users and

generating Web pages with dynamic content.

• Interactivity between the user and the server has become a

crucial part of Web functionality. While other languages can

also perform these functions, PHP was written specifically

for interacting with the Web.

• PHP code is embedded directly into XHTML documents.

This allows the document author to write XHTML in a clear,

concise manner, without having to use multiple print

statements, as is necessary with other CGI-based languages.

CNT 4714: PHP – Part 1 Page 5 Mark Llewellyn ©

Introduction to PHP (cont.)

• PHP script file names usually end with .php, although a server
can be configured to handle other file extensions.

• To run a PHP script, PHP must first be installed on your
system. Download PHP 5.2.6 from www.php.net. (Most recent
version is 5.2.6.)

• Although PHP can be used from the command line, a Web
server is required to take full advantage of the scripting
language. I would suggest the Apache server available from
www.apache.org. (Note: this is not the Tomcat server you’ve
already used.) Current version is 2.2.8 which is a new major
version change from the previous 2.0.xx versions (mostly in the
areas of security).

• The easiest way to get this setup is to use WAMP Server. The
current version of this is WAMP 2.0 which automatically loads
and configures Apache 2.2.8, MySQL 5.0.51b and PHP 5.2.6
This is how I’ll show you to get it set-up. Go to
www.wampserver.com.

http://www.php.net/
http://www.php.net/
http://www.php.net/
http://www.php.net/
http://www.php.net/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.wampserver.com/
http://www.wampserver.com/
http://www.wampserver.com/
http://www.wampserver.com/
http://www.wampserver.com/

CNT 4714: PHP – Part 1 Page 6 Mark Llewellyn ©

WAMP Server

Homepage

Click here to

download.

CNT 4714: PHP – Part 1 Page 7 Mark Llewellyn ©

Download page

CNT 4714: PHP – Part 1 Page 8 Mark Llewellyn ©

CNT 4714: PHP – Part 1 Page 9 Mark Llewellyn ©

Inside the wamp

directory go to the

Apache configuration

folder and find the

httpd configuration

file.

CNT 4714: PHP – Part 1 Page 10 Mark Llewellyn ©

Edit the httpd

configuration file to have

the Apache server listen

on port 8081 instead of

port 80 as is the default

case.

CNT 4714: PHP – Part 1 Page 11 Mark Llewellyn ©

A PHP Test Example

This is

PHP

Create this file named
hello.php and save it to the

www folder in the WAMP server.

Then start the WAMP server,

enter the URL:

http://localhost:8081/hello.php

and you should see output similar

to that shown on the next slide.

http://localhost:8081/hello.php

CNT 4714: PHP – Part 1 Page 12 Mark Llewellyn ©

The default directory for

the php.ini file. Set by

WAMP.

CNT 4714: PHP – Part 1 Page 13 Mark Llewellyn ©

A First PHP Example

• The following two pages illustrate a simple PHP “hello

world” program.

• In PHP, code is inserted between the scripting delimiters

<?php and ?>. PHP code can be placed anywhere in

XHTML markup, as long as the code is enclosed in these

scripting delimiters.

• Place all of your XHTML and PHP files inside the WAMP

www directory.

CNT 4714: PHP – Part 1 Page 14 Mark Llewellyn ©

welcome.php Example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- welcome.php -->

<!-- XHTML file containing a PHP script. -->

<?php

$name = "Mark"; //php declaration and assignment

?>

<html xmlns = "http://www.w3.org/1999/xhtml">

<!-- head section of document -->

<head>

<title>A Simple PHP Document</title>

</head>

<!-- body section of document -->

<body style = "font-size: 2em">

<hr>

<h1> Generating HTML From PHP </h1>

<p>

PHP code

declaring a

variable.

CNT 4714: PHP – Part 1 Page 15 Mark Llewellyn ©

welcome.php Example

<!---print variable name's value in the message-->

<?php

print("This is your first crack at running a PHP script...");

print("<HR>");

print("Welcome to the world of PHP technology, ");

?>

<?php

print("$name");

?>

</p>

</body>

</html> <!-- end XHTML document -->

PHP

code

PHP

code

CNT 4714: PHP – Part 1 Page 16 Mark Llewellyn ©

welcome.php Example Output

CNT 4714: PHP – Part 1 Page 17 Mark Llewellyn ©

Viewing Client/Server Environment Variables

• Knowledge of a client’s execution environment is useful to

system administrators who want to provide client-specific

information.

• Environment variables contain information about a script’s

environment, such as the client’s web browser, the HTTP

host and the HTTP connection.

– The table on the next page summarizes some of the superglobal

arrays defined by PHP.

• The XHTML document on page 19 displays the values of the

server’s environment variables in a table. PHP stores the

server variables and their values in the $_SERVER array.

Iterating through the array allows one to view all of the

server’s environment variables.

CNT 4714: PHP – Part 1 Page 18 Mark Llewellyn ©

Some Superglobal Environment Arrays

Variable Name Description

$_SERVER Data about the currently running server.

$_ENV Data about the client’s environment.

$_GET Data posted to the server by the get method.

$_POST Data posted to the server by the post method.

$_COOKIE Data contained in cookies on the client’s computer.

$GLOBALS Array containing all global variables.

CNT 4714: PHP – Part 1 Page 19 Mark Llewellyn ©

server.php Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- server.php -->

<!-- Program to display $_SERVER variables -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>SERVER Variables Display</title>

</head>

<body style = "font-family: arial, sans-serif;

background-color: #856363" background=image1.jpg>

<table border = "0" cellpadding = "2" cellspacing = "0"

width = "100%">

<?php

// print the key and value for each element

// in the $_SERVER array

foreach ($_SERVER as $key => $value)

print("<tr><td bgcolor = \"#11bbff\">

$key</td> <td>$value</td></tr>");

?>

</table>

</body>

</html>

Iterate through the

$_SERVER array to list all

of the SERVER variables for

the current server on which

PHP is running.

CNT 4714: PHP – Part 1 Page 20 Mark Llewellyn ©

Output from

executing

server.php

CNT 4714: PHP – Part 1 Page 21 Mark Llewellyn ©

Form Processing and Business Logic

• XHTML forms enable web pages to collect data from users

and send it to a web server for processing.

• Interaction of this kind between users and web servers is vital

to e-commerce applications. Such capabilities allow users to

purchase products, request information, send and receive

web-based email, perform on-line paging and take advantage

of various other online services.

• The XHTML document on the next few pages collects

information from a user for the purposes of adding them to a

mailing list.

• The PHP file on page 23 validates the data entered by the

user through the form and “registers” them in the mailing list

database.

CNT 4714: PHP – Part 1 Page 22 Mark Llewellyn ©

form.html Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- form.html -->

<!-- Form for use with the form.php program -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Sample form to take user input in XHTML</title>

</head>

<body>

<h1>This is a sample registration form.</h1>

Please fill in all fields and click Register.

<!-- post form data to form.php -->

<form method = "post" action = "form.php">

Please fill out the fields below.

<!-- create four text boxes for user input -->

<input type = "text" name = "fname" />

This XHTML document

generates the form that the

user will submit to the

server via form.php

CNT 4714: PHP – Part 1 Page 23 Mark Llewellyn ©

<input type = "text" name = "lname" />

<input type = "text" name = "email" />

<input type = "text" name = "phone" />

Must be in the form (555)555-5555

<img src = "images/downloads.gif"

alt = "Products" />

Which publication would you like information about?

<!-- create drop-down list containing magazine names -->

<select name = "magazine">

<option>Velo-News</option>

<option>Cycling Weekly</option>

<option>Pro Cycling</option>

<option>Cycle Sport</option>

<option>RadSport</option>

<option>Mirror du Cyclisme</option>

</select>

CNT 4714: PHP – Part 1 Page 24 Mark Llewellyn ©

Which operating system are you currently using?

<!-- create five radio buttons -->

<input type = "radio" name = "os" value = "Windows XP"

checked = "checked" />

Windows XP

<input type = "radio" name = "os" value =

"Windows 2000" />

Windows 2000

<input type = "radio" name = "os" value =

"Windows 98" />

Windows 98

<input type = "radio" name = "os" value = "Linux" />

Linux

<input type = "radio" name = "os" value = "Other" />

Other

<!-- create a submit button -->

<input type = "submit" value = "Register" />

</form>

</body>

</html>

CNT 4714: PHP – Part 1 Page 25 Mark Llewellyn ©

form.php Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- form.php -->

<!-- Read information sent from form.html -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Form Validation</title>

</head>

<body style = "font-family: arial,sans-serif">

<?php

extract($_POST);

// determine whether phone number is valid and print an error message if not

if (!ereg("^\([0-9]{3}\)[0-9]{3}-[0-9]{4}$",

$phone)){

print("<p>

INVALID PHONE NUMBER:

A valid phone number must be in the form

(555)555-5555

Click the Back button, enter a valid phone number and resubmit.

Thank You.</p></body></html>");

die(); // terminate script execution

}

?>

Function extract

(associativeArray) creates a

variable-value pair

corresponding to each key-

value pair in the associative

array $_POST.

Function die() terminates script execution.

An error has occurred, no need to continue.

See page 36 for

explanation of regular

expressions.

CNT 4714: PHP – Part 1 Page 26 Mark Llewellyn ©

<p>Hi

 <?php print("$fname"); ?> .

Thank you for completing the survey.

You have been added to the

 <?php print("$magazine "); ?> mailing list.

</p>

The following information has been saved in our database:

<table border = "0" cellpadding = "0" cellspacing = "10">

<tr>

<td bgcolor = "#ffffaa">Name </td>

<td bgcolor = "#ffffbb">Email</td>

<td bgcolor = "#ffffcc">Phone</td>

<td bgcolor = "#ffffdd">OS</td>

</tr>

<tr>

<?php

// print each form field’s value

print("<td>$fname $lname</td> <td>$email</td> <td>$phone</td> <td>$os</td>");

?>

</tr>

</table>

<div style = "font-size: 10pt; text-align: center">

This is only a sample form. You have not been added to a mailing list.

</div>

</body>

</html>

CNT 4714: PHP – Part 1 Page 27 Mark Llewellyn ©

Execution of

form.html within a

web browser

CNT 4714: PHP – Part 1 Page 28 Mark Llewellyn ©

After execution of

form.php has

verified correct

entries made

within the form.

CNT 4714: PHP – Part 1 Page 29 Mark Llewellyn ©

After execution of

form.php has

verified correct

entries made

within the form.

CNT 4714: PHP – Part 1 Page 30 Mark Llewellyn ©

User enters an

improperly

formatted

telephone number

in the form.

CNT 4714: PHP – Part 1 Page 31 Mark Llewellyn ©

form.php issues

error regarding

improperly

formatted

telephone number.

CNT 4714: PHP – Part 1 Page 32 Mark Llewellyn ©

How the Form Example Works

• The action attribute of the form element, indicates that

when the user clicks the Register button, the form data

will be posted to form.php for processing.

• Using method = “post” appends the form data to the

browser request that contains the protocol (i.e., HTTP) and

the requested resource’s URL. Scripts located on the web

server’s machine (or accessible through the network) can

access the form data sent as part of the request.

• Each of the form’s input fields are assigned a unique name.

When Register is clicked, each field’s name and value

are sent to the web server.

• Script form.php then accesses the value for each specific

field through the global array $_POST.

CNT 4714: PHP – Part 1 Page 33 Mark Llewellyn ©

How the Form Example Works (cont.)

• The superglobal arrays are associative arrays predefined by

PHP that hold variable acquired from the user input, the

environment, or the web server and are accessible in any

variable scope.

– If the information from the form had been submitted via the HTTP
method get, then the superglobal array $_GET would contain the

name-value pairs.

• Since the HTML form and the PHP script “communicate”

via the name-value pairs, it is a good idea to make the

XHTML object names meaningful so that the PHP script that

retrieves the data is easier to understand.

CNT 4714: PHP – Part 1 Page 34 Mark Llewellyn ©

Register_globals

• In PHP versions 4.2 and higher, the directive

register_globals is set to Off by default for security

reasons.

• Turning off register_globals means that all variables

sent from an XHTML form to a PHP document now must be

accessed using the appropriate superglobal array (either

$_POST or $_GET).

• When this directive was turned On, as was the default case in

PHP versions prior to 4.2, PHP created an individual global

variable corresponding to each form field.

CNT 4714: PHP – Part 1 Page 35 Mark Llewellyn ©

Validation of Form Generated Data

• The form example illustrates an important concept in the

validation of user input. In this case, we simply checked the

validity of the format of the telephone number entered by the

client user.

• In general, it is crucial to validate information that will be

entered into database or used in mailing lists. For example,

validation can be used to ensure that credit-card numbers

contain the proper number of digits before the numbers are

encrypted to a merchant.

• In this case, the form.php script is implementing the business

logic or business rules for our application.

CNT 4714: PHP – Part 1 Page 36 Mark Llewellyn ©

Pattern Matching in PHP

• For powerful string comparisons (pattern matching), PHP
provides functions ereg and preg_match, which use
regular expressions to search a string for a specified pattern.

• Function ereg uses Portable Operating System Interface
(POSIX) extended regular expressions.

– POSIX-extended regular expressions are a standard to which PHP
regular expression conform.

• Function preg_match provides Perl-compatible regular
expressions.

• Perl-compatible regular expressions are more widely used
that POSIX regular expressions. PHP’s support for Perl-
compatible regular expressions eases migration from Perl to
PHP. The following examples illustrates these concepts.

CNT 4714: PHP – Part 1 Page 37 Mark Llewellyn ©

expression.php - Example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- expression.php -->

<!-- Using regular expressions -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Regular expressions</title>

</head>

<body>

<?php

$search = "Now is the time";

print("Test string is: '$search'

");

// call function ereg to search for pattern ’Now’ in variable search

if (ereg("Now", $search))

print("String 'Now' was found.
");

// search for pattern ’Now’ in the beginning of the string

if (ereg("^Now", $search))

print("String 'Now' found at beginning of the line.
");

// search for pattern ’Now’ at the end of the string

if (ereg("Now$", $search))

print("String 'Now' was found at the end of the line.
");

^ matches at beginning

of a string

$ matches at end of a

string

CNT 4714: PHP – Part 1 Page 38 Mark Llewellyn ©

// search for any word ending in ’ow’

if (ereg("[[:<:]]([a-zA-Z]*ow)[[:>:]]", $search,

$match))

print("Word found ending in 'ow': " .

$match[1] . "
");

// search for any words beginning with ’t’

print("Words beginning with 't' found: ");

while (eregi("[[:<:]](t[[:alpha:]]+)[[:>:]]",

$search, $match)) {

print($match[1] . " ");

// remove the first occurrence of a word beginning

// with ’t’ to find other instances in the string

$search = ereg_replace($match[1], "", $search);

}

print("
");

?>

</body>

</html>

Uses a regular expression to

match a word ending in “ow”.

CNT 4714: PHP – Part 1 Page 39 Mark Llewellyn ©

Output From expression.php - Example

CNT 4714: PHP – Part 1 Page 40 Mark Llewellyn ©

Verifying a Username and Password Using PHP

• It is often the case that a private website is created which is

accessible only to certain individuals.

• Implementing privacy generally involves username and

password verification.

• In the next example, we’ll see an XHTML form that queries

a user for a username and password. The fields

USERNAME and PASSWORD are posted to the PHP script

verify.php for verification.

– For simplicity, data is not encrypted before sending it to the server.

– For more information on PHP encryption functions visit:

http://www.php.net/manual/en/ref.mcrypt.php.

http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php
http://www.php.net/manual/en/ref.mcrypt.php

CNT 4714: PHP – Part 1 Page 41 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- password.html -->

<!-- XHTML form sent to password.php for verification -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title>Verifying a username and a password.</title>

<style type = "text/css">

td { background-color: #DDDDDD }

</style>

</head>

<body style = "font-family: arial">

<p style = "font-size: 18pt">

 Welcome to the COP 4610 High Security WebPage <HR>

<p style = "font-size: 13pt">

Type in your username and password below.

<span style = "color: #0000FF; font-size: 10pt;

font-weight: bold">

Note that password will be sent as plain text - encryption not used in this application

</p>

password.html – page 1

CNT 4714: PHP – Part 1 Page 42 Mark Llewellyn ©

<!-- post form data to password.php -->

<form action = "password.php" method = "post">

<table border = "3" cellspacing = "3" style = "height: 90px; width: 150px;

font-size: 10pt" cellpadding = "1">

<tr>

<td colspan = "3"> Username: </td>

</tr>

<tr>

<td colspan = "3"> <input size = "40" name = "USERNAME"

style = "height: 22px; width: 115px" /> </td>

</tr>

<tr>

<td colspan = "3"> Password: </td>

</tr>

<tr>

<td colspan = "3"> <input size = "40" name = "PASSWORD"

style = "height: 22px; width: 115px" type = "password" />
</td>

</tr>
<tr>

<td colspan = "1">
<input type = "submit" name = "Enter" value = "Enter" style = "height: 23px;

width: 47px" /> </td>
<td colspan = "2"> <input type = "submit" name = "NewUser" value = "New User"

style = "height: 23px" />
</td>

</tr>
</table> </form> <HR> </body> </html>

password.html – page 2

CNT 4714: PHP – Part 1 Page 43 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- password.php -->
<!-- Searching a database for usernames and passwords. -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>

<?php
extract($_POST);
// check if user has left USERNAME or PASSWORD field blank
if (!$USERNAME || !$PASSWORD) {

fieldsBlank();
die();

}
// check if the New User button was clicked
if (isset($NewUser)) {

// open password.txt for writing using append mode
if (!($file = fopen("password.txt", "a"))) {

// print error message and terminate script
// execution if file cannot be opened
print("<title>Error</title></head><body>
Could not open password file
</body></html>");

die();
}

password.php – page 1

CNT 4714: PHP – Part 1 Page 44 Mark Llewellyn ©

// write username and password to file and call function userAdded
fputs($file, "$USERNAME,$PASSWORD\n");
userAdded($USERNAME);

}
else {

// if a new user is not being added, open file
// for reading
if (!($file = fopen("password.txt", "r"))) {

print("<title>Error</title></head>
<body>Could not open password file
</body></html>");

die();
}

$userVerified = 0;

// read each line in file and check username and password
while (!feof($file) && !$userVerified) {

// read line from file
$line = fgets($file, 255);

// remove newline character from end of line
$line = chop($line);

// split username and password using comma delimited string
$field = split(",", $line, 2);

password.php – page 2

CNT 4714: PHP – Part 1 Page 45 Mark Llewellyn ©

// verify username
if ($USERNAME == $field[0]) {

$userVerified = 1;

// call function checkPassword to verify user’s password
if (checkPassword($PASSWORD, $field) == true)

accessGranted($USERNAME);
else

wrongPassword();
}

}

// close text file
fclose($file);

// call function accessDenied if username has not been verified
if (!$userVerified)

accessDenied();
}

// verify user password and return a boolean
function checkPassword($userpassword, $filedata)
{

if ($userpassword == $filedata[1])
return true;

else
return false;

}

password.php – page 3

CNT 4714: PHP – Part 1 Page 46 Mark Llewellyn ©

// print a message indicating the user has been added
function userAdded($name) {

print("<title>Thank You</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: blue\">
You have been added
to the user list, $name. Please remember your password.

Enjoy the site.");

}

// print a message indicating permission has been granted
function accessGranted($name) {

print("<title>Thank You</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: blue\">
Permission has been
granted, $name.

Enjoy the site.");

}
// print a message indicating password is invalid
function wrongPassword() {

print("<title>Access Denied</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: red\">
You entered an invalid
password.
Access has
been denied.");

}

password.php – page 4

CNT 4714: PHP – Part 1 Page 47 Mark Llewellyn ©

// print a message indicating access has been denied
function accessDenied() {

print("<title>Access Denied</title></head>
<body style = \"font-family: arial;
font-size: 1em; color: red\">

You were denied access to this server.

");

}

// print a message indicating that fields
// have been left blank

function fieldsBlank() {
print("<title>Access Denied</title></head>

<body style = \"font-family: arial;
font-size: 1em; color: red\">

Please fill in all form fields.

");

}
?>

</body>
</html>

password.php – page 5

CNT 4714: PHP – Part 1 Page 48 Mark Llewellyn ©

Execution of

password.html. Client-

side XHTML form.

User clicks on New

User button to enter

their information.

Execution of

password.php to

enter a new user.

CNT 4714: PHP – Part 1 Page 49 Mark Llewellyn ©

Execution of

password.html. Client-

side XHTML form. User

clicks on Enter button to

submit and verify their

information.

Execution of

password.php to

invalidate an

attempted entry by a

user.

CNT 4714: PHP – Part 1 Page 50 Mark Llewellyn ©

How password.php Works
• The PHP script password.php verifies the client’s username

and password by querying a database. For this example, the

“database” of usernames and passwords is just a text file (for

simplicity). Existing users are validated against this file, and

new users are appended to it.

• Whether we are dealing with a new

user is determined by calling function

isset to test if variable $NewUser

has been set.

• When the user submits the password.html form to the server,

they click either Enter or New User button. After calling
function extract, either variable $NewUser or $Enter is

created depending on which button was selected. If
$NewUser has not been set, we assume the user clicked Enter.

The password.txt “database”

CNT 4714: PHP – Part 1 Page 51 Mark Llewellyn ©

PHP and Database Connectivity
• PHP offers built-in support for a wide variety of database

systems from Unix DBM through relational systems such as

MySQL to full size commercial systems like Oracle.

• We’ll continue to use MySQL as the underlying database

system so that you can easily compare the work we’ve done

with MySQL using Java servlets and JSPs.

• Before you go any further in these notes you must configure

PHP to access MySQL databases. Beginning with PHP 5,

MySQL is not enabled by default in PHP, nor is the MySQL

library bundled with PHP.

– Versions of MySQL greater than 4.1.0 use MySQLi extensions.

– Versions of MySQL less than 4.1.0 use MySQL extensions.

CNT 4714: PHP – Part 1 Page 52 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

This is the MySQL library that

both mysql and mysqli

extensions require.

CNT 4714: PHP – Part 1 Page 53 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

These are the MySQL

extension files that will be

used to link PHP to MySQL.

CNT 4714: PHP – Part 1 Page 54 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

These two extensions will not be

commented out. At loadtime, these

extensions will now be included in

the PHP environment, provided

that the file php.ini is set..

CNT 4714: PHP – Part 1 Page 55 Mark Llewellyn ©

PHP should be configured for

MySQL. You can verify that the

php.ini file was properly read and

the MySQL extensions are loaded

by running the info.php script and

looking for these entries.

CNT 4714: PHP – Part 1 Page 56 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

• PHP contains a fairly extensive set of commands that can be

used to access and manipulate MySQL databases.

• A very brief listing of some of these commands appears on

the next page.

• For a complete listing see:

http://us2.php.net/manual/en/print/ref.mysql.php.

http://us2.php.net/manual/en/print/ref.mysqli.php.

http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysql.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php
http://us2.php.net/manual/en/print/ref.mysqli.php

CNT 4714: PHP – Part 1 Page 57 Mark Llewellyn ©

Portion of mysql.dll Extension

CNT 4714: PHP – Part 1 Page 58 Mark Llewellyn ©

Portion of mysqli.dll Extension

CNT 4714: PHP – Part 1 Page 59 Mark Llewellyn ©

PHP and Database Connectivity (cont.)

• Now that you have PHP set to accept MySQL extensions,

let’s connect to the bike database that we used for examples

with Java servlets and JSPs.

• The following example is a simple database connection

process in PHP where the client interacts with the database

from an XHTML form that simply asks them to select which

attributes from the bikes table that they would like to display.

This is done through the data.html file.

• When the client clicks the submit query button, the

database.php script executes by connecting to the

database, posting the query, retrieving the results, and

displaying them to the client.

CNT 4714: PHP – Part 1 Page 60 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- data.html -->
<!-- Querying a MySQL Database From a PHP Script -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Sample Database Query From PHP</title> </head>
<body style = "background-color: #545454" background=image1.jpg >

<h2 style = "font-family: arial color: blue"> Querying a MySQL database from a PHP Script. </h2>
<form method = "post" action = "database.php">

<p>Select a field to display:
<!-- add a select box containing options for SELECT query -->
<select name = "select">

<option selected = "selected">*</option>
<option>bikename</option>
<option>size</option>
<option>color</option>
<option>cost</option>
<option>purchased</option>
<option>mileage</option>

</select>
</p>
<input type = "submit" value = "Send Query" style = "background-color: blue;

color: yellow; font-weight: bold" />
</form>

</body> </html>

data.html

Client side

CNT 4714: PHP – Part 1 Page 61 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- database.php -->
<!-- Program to query a database and send results to the client. -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Database Search Results</title> </head>

<body style = "font-family: arial, sans-serif"
style = "background-color: #4A766E" background=image1.jpg link=blue vlink=blue>
<?php

extract($_POST);

// build SELECT query
$query = "SELECT " . $select . " FROM bikes";

// Connect to MySQL
if (!($database = mysqli_connect("localhost",

"root", "root“, bikedb)))
die("Could not connect to database");

database.php

Server side

Page 1

Connect to MySQL database.

URL, username, password, and

database all specified.

Default query is to select the attributes chosen by

the client for use in a SELECT query.

CNT 4714: PHP – Part 1 Page 62 Mark Llewellyn ©

// query bikedb database
if (!($result = mysql_query($database, $query))) {

print("Could not execute query!
");
die(mysql_error());

}
?>

<h3 style = "color: blue">
Database Search Results</h3>
<table border = "1" cellpadding = "3" cellspacing = "3"

style = "background-color: #00FFFF"> <!-- ADD8E6 -->

<?php
// fetch meta-data
$metadata = mysqli_fetch_fields($result);
print("<tr>");
for ($i=0; $i<count($metadata); $i++){

print("<td>");
printf("%s",$metadata[$i]->name);
print("</td>");

}
print("</tr>");

database.php

Server side

Page 2

Get metadata for
the query

Display metadata in the
top row of the table

CNT 4714: PHP – Part 1 Page 63 Mark Llewellyn ©

// fetch each record in result set
for ($counter = 0;

$row = mysql_fetch_row($result);
$counter++){
// build table to display results
print("<tr>");
foreach ($row as $key => $value)

print("<td>$value</td>");
print("</tr>");

}
mysql_close($database);

?>
</table>

Your search yielded

<?php print("$counter") ?> results.

<h5>Please email comments to

markl@cs.ucf.edu

</h5>
</body></html>

database.php

Server side

Page 3

CNT 4714: PHP – Part 1 Page 64 Mark Llewellyn ©

Execution of data.html – Client side

Execution of data.html (client side of

the application) showing the drop-

down menu for the client to select the

attributes for the query.

When the selection is made and the

Send Query button is clicked the

results on the following page will be

displayed.

CNT 4714: PHP – Part 1 Page 65 Mark Llewellyn ©

Results of query SELECT *

FROM bikes. Display

indicates that 10 rows were

included in the result.

CNT 4714: PHP – Part 1 Page 66 Mark Llewellyn ©

Cookies
• A cookie is a text file that a Web site stores on a client’s

computer to maintain information about the client during and

between browsing sessions.

• A Web site can store a cookie on a client’s computer to

record user preferences and other information that the Web

site can retrieve during the client’s subsequent visits. For

example, many Web sites use cookies to store client’s

zipcodes. The Web site can retrieve the zipcode from the

cookie and provide weather reports and news updates

tailored to the user’s region.

• Web sites also use cookies to track information about client

activity. Analysis of information collected via cookies can

reveal the popularity of Web sites or products.

CNT 4714: PHP – Part 1 Page 67 Mark Llewellyn ©

Cookies (cont.)

• Marketers use cookies to determine the effectiveness of

advertising campaigns.

• Web sites store cookies on users’ hard drives, which raises

issues regarding security and privacy. Web sites should not

store critical information, such as credit-card numbers or

passwords, in cookies, because cookies are just text files that

anyone can read.

• Several cookie features address security and privacy

concerns. A server can access only the cookies that it has

placed on the client.

• A cookies has an expiration date, after which the Web

browser deletes it.

CNT 4714: PHP – Part 1 Page 68 Mark Llewellyn ©

Cookies (cont.)

• Users who are concerned about the privacy and security

implications of cookies can disable them in their Web

browsers. However, the disabling of cookies can make it

impossible for the user to interact with Web sites that rely on

cookies to function properly.

• Information stored in the cookie is sent to the Web server

from which it originated whenever the user requests a Web

page from that particular server. The Web server can send

the client XHTML output that reflects the preferences or

information that is stored in the cookie.

• The location of the cookie file varies from browser to

browser. Internet Explorer places cookies in the Cookies

directory located at C:\Documents and Settings\...\Cookies

CNT 4714: PHP – Part 1 Page 69 Mark Llewellyn ©

Cookies (cont.)

• After a cookie is created, a text file is added to this directory.

While the name of the file will vary from user to user a

typical example is shown below.

• The contents of a cookie are shown on page 74.

CNT 4714: PHP – Part 1 Page 70 Mark Llewellyn ©

Cookies (cont.)

• Now let’s create the code necessary to create our own cookie.

• In this example, a PHP script is invoked from a client-side

HTML document. The HTML document creates a form for the

user to enter the information that will be stored in the cookie.

(Often the information that is stored in a cookie will be

extracted from several different areas and may involved

tracking the client’s actions at the Web site.)

• Once the user has entered their information, when they click the

Write Cookie button, the cookies.php script executes.

• The XHTML document and the PHP script are shown on the
next pages. The XHTML document cookies.html is on

page 36 and the PHP script cookies.php appears on page

37.

CNT 4714: PHP – Part 1 Page 71 Mark Llewellyn ©

cookies.html – page 1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- cookies.html -->
<!-- Writing a Cookie -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Writing a cookie to the client computer</title> </head>

<body style = "font-family: arial, sans-serif;
background-color: #856363" background=image1.jpg>
<h2>Click Write Cookie to save your cookie data.</h2>

<form method = "post" action = "cookies.php" style = "font-size: 10pt"
background-color: #856363">

Name:

<input type = "text" name = "NAME" />

Height:

<input type = "text" name = "HEIGHT" />

Favorite Color:

<input type = "text" name = "COLOR" />

<p>

<input type = "submit" value = "Write Cookie" style = "background-color: #0000FF;
color: yellow; font-weight: bold" /></p>

</form>
</body> </html>

CNT 4714: PHP – Part 1 Page 72 Mark Llewellyn ©

cookies.php – page 1
<?php

// cookies.php
// Program to write a cookie to a client's machine
extract($_POST);

// write each form field’s value to a cookie and set the
// cookie’s expiration date
setcookie("Name", $NAME, time() + 60 * 60 * 24 * 5);
setcookie("Height", $HEIGHT, time() + 60 * 60 * 24 * 5);
setcookie("Color", $COLOR, time() + 60 * 60 * 24 * 5);

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Cookie Saved</title> </head>
<body style = "font-family: arial, sans-serif", background=image1.jpg>

<p>The cookie has been set with the following data:</p>
<!-- print each form field’s value -->

Name:

<?php print($NAME) ?>

Height:

<?php print($HEIGHT) ?>

Favorite Color:
<span style = "color: <?php print("$COLOR\">$COLOR") ?>

<p>Click here to read the saved cookie.</p>

</body> </html>

Function setcookie sets the cookies
to the values passed from the
cookies.html form. Function
setcookie prints XHTML header
information and therefore it needs to
be called before any other XHTML
(including comments) is printed.

The third argument to
setcookie is optional and
indicates the expiration date of
the cookie. In this case it is
set to expire 5 days from the
current time. Function time
returns the current time and
then we add to this the
number of seconds after
which the cookie is to expire.

CNT 4714: PHP – Part 1 Page 73 Mark Llewellyn ©

Cookies (cont.)

HTML form
generated by
cookies.html

CNT 4714: PHP – Part 1 Page 74 Mark Llewellyn ©

Cookies (cont.)

Output from
cookies.php script
showing the values in
the newly created
cookie.

CNT 4714: PHP – Part 1 Page 75 Mark Llewellyn ©

Cookies (cont.)

• Once the cookie has been created, the cookies.php script gives

the user the chance to view the newly created cookie by

invoking the readCookies.php script from within the

cookies.php script by clicking on the link.

• The readCookies.php script code is illustrated on the next page

followed by the output from the execution of this PHP script.

CNT 4714: PHP – Part 1 Page 76 Mark Llewellyn ©

readCookies.php – page 1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- readCookies.php -->
<!-- Program to read cookies from the client's computer -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head><title>Read Cookies</title></head>

<body style = "font-family: arial, sans-serif" background=image1.jpg>
<p>

 The following data is saved in a cookie on your computer.

</p>
<table border = "5" cellspacing = "0" cellpadding = "10">

<?php
// iterate through array $_COOKIE and print
// name and value of each cookie
foreach ($_COOKIE as $key => $value)

print("<tr>
<td bgcolor=\"#F0E68C\">$key</td>
<td bgcolor=\"#FFA500\">$value</td>
</tr>");

?>
</table>

</body> </html>

Superglobal array
holding cookie.

CNT 4714: PHP – Part 1 Page 77 Mark Llewellyn ©

Cookies (cont.)

Output from the
readCookies.php
script.

CNT 4714: PHP – Part 1 Page 78 Mark Llewellyn ©

Cookies (cont.)

Contents of the

cookie stored

on the client

machine.

CNT 4714: PHP – Part 1 Page 79 Mark Llewellyn ©

Cookies (cont.)

Actual text file holding cookie data for the
cookie that was created in this example.

CNT 4714: PHP – Part 1 Page 80 Mark Llewellyn ©

Dynamic Content in PHP
• Of all the strengths PHP exhibits as a server-side scripting

language, perhaps its greatest strength lies in its ability to

dynamically change XHTML output based on user input.

• In this final section of notes, we’ll build on the examples we’ve

constructed in the previous two sets of notes by combining

form.html and form.php into one dynamic PHP document

named dynamicForm2.php.

• We’ll add error checking to the user input fields and inform the

user of invalid entries on the form itself, rather than on an error

page. If an error exists, the script maintains the previously

submitted values in each form element.

• Finally, after the form has been successfully completed, we’ll

store the input from the user in a MySQL database.

CNT 4714: PHP – Part 1 Page 81 Mark Llewellyn ©

Basically, the same
registration form that was
used in a previous example.

CNT 4714: PHP – Part 1 Page 82 Mark Llewellyn ©

User fills in the form and clicks
the Register button.

CNT 4714: PHP – Part 1 Page 83 Mark Llewellyn ©

Screen the user sees
after clicking the
Register button.

CNT 4714: PHP – Part 1 Page 84 Mark Llewellyn ©

Screen the user sees
after clicking to see
the entire database.

CNT 4714: PHP – Part 1 Page 85 Mark Llewellyn ©

Dynamic nature of the PHP form is illustrated
when the user fails to enter proper information
into the form. In this case, the user forgot to enter
their first name. Error checking is in place on
each user input location and the page is
dynamically updated to reflect the error
processing and correction capabilities. The
database will not be updated until the user has
correctly filled in all required fields.

CNT 4714: PHP – Part 1 Page 86 Mark Llewellyn ©

Screen shot from MySQL of the contacts relation
after the inclusion of several users. Note that the
values in the table are the same as those returned to
the PHP document in the previous slide.

CNT 4714: PHP – Part 1 Page 87 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!-- dynamicForm2.php -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>

<title>Sample form to take user input in XHTML</title>
</head>
<body style = "font-family: arial, sans-serif; background-color: #856363"
background=background.jpg>

<?php
extract ($_POST);
$iserror = false;
// array of magazine titles
$maglist = array("Velo-News",

"Cycling Weekly",
"Pro Cycling",
"Cycle Sport",

"RadSport",
"Mirror du Cyclisme");

// array of possible operating systems
$systemlist = array("Windows XP",

"Windows 2000",
"Windows 98",
"Linux",
"Other");

dynamicForm2.php – page 1

CNT 4714: PHP – Part 1 Page 88 Mark Llewellyn ©

// array of name and alt values for the text input fields
$inputlist = array("fname" => "First Name",

"lname" => "Last Name",
"email" => "Email",
"phone" => "Phone");

if (isset ($submit)) {
if ($fname == "") {

$formerrors["fnameerror"] = true;
$iserror = true;

}
if ($lname == "") {

$formerrors["lnameerror"] = true;
$iserror = true;

}
if ($email == "") {

$formerrors["emailerror"] = true;
$iserror = true;

}
if (!ereg("^\([0-9]{3}\)[0-9]{3}-[0-9]{4}$", $phone)) {

$formerrors["phoneerror"] = true;
$iserror = true;

}
if (!$iserror) {

// build INSERT query
$query = "INSERT INTO contacts " .

"(ID, LastName, FirstName, Email, Phone, Magazine, OS) " .
"VALUES (null, '$lname', '$fname', '$email', " . "'" . quotemeta($phone) . "', '$mag', '$os')";

dynamicForm2.php – page 2

CNT 4714: PHP – Part 1 Page 89 Mark Llewellyn ©

// Connect to MySQL
if (!($database = mysql_connect("localhost",

"root", "root")))
die("Could not connect to database");

// open MailingList database
if (!mysql_select_db("MailingList", $database))

die("Could not open MailingList database");

// execute query in MailingList database
if (!($result = mysql_query($query, $database))) {

print("Could not execute query!
");
die(mysql_error());

}
print("<p>Hi

 $fname.
Thank you for completing the survey.

You have been added to the
$mag mailing list. </p>
The following information has been saved in our database:

<table border = '0' cellpadding = '0' cellspacing = '10'>
<tr>
<td bgcolor = '#ffffaa'>Name </td>
<td bgcolor = '#ffffbb'>Email</td>
<td bgcolor = '#ffffcc'>Phone</td>
<td bgcolor = '#ffffdd'>OS</td>
</tr>
<tr>

dynamicForm2.php – page 3

CNT 4714: PHP – Part 1 Page 90 Mark Llewellyn ©

<!-- print each form field’s value -->
<td>$fname $lname</td>
<td>$email</td>
<td>$phone</td>
<td>$os</td>
</tr></table>

<div style = 'font-size : 10pt; text-align: center'>

<div style = 'font-size : 18pt'>

Click here to view entire database.
</div>

</div></body></html>");
die();

}
}
print("<h1>This is a sample registration form.</h1>

Please fill in all fields and click Register.");
if ($iserror) {

print("

Fields with * need to be filled in properly.");

}
print("<!-- post form data to dynamicForm2.php -->

<form method = 'post' action = 'dynamicForm2.php'>

Please fill out the fields below.

dynamicForm2.php – page 4

Invoke PHP script to see
contents of entire
database if user clicks
this link. Code begins on
page 14.

The form created is self-
submitting (i.e., it posts to

itself). This is done by setting
the action to

dynamicForm2.php

CNT 4714: PHP – Part 1 Page 91 Mark Llewellyn ©

<!-- create four text boxes for user input -->");
foreach ($inputlist as $inputname => $inputalt) {

$inputtext = $inputvalues[$inputname];

print("<img src = 'images/$inputname.gif'
alt = '$inputalt' /><input type = 'text' name = '$inputname' value = '" . $$inputname . "' />");

if ($formerrors[($inputname)."error"] == true)
print("*");

print("
");
}
print("<span style = 'font-size : 10pt");
if ($formerrors["phoneerror"]) print("; color : red");
print("'>Must be in the form (555)555-5555

<img src = 'images/downloads.gif'
alt = 'Publications' />

Which magazine would you like information about?

<!-- create drop-down list containing magazine names -->
<select name = 'mag'>");

foreach ($maglist as $currmag) {
print("<option");
if (($currmag == $mag))

print(" selected = 'true'");
print(">$currmag</option>");

}

dynamicForm2.php – page 5

The $$variable notation
specifies variable variables.
PHP permits the use of
variable variables to allow
developers to reference
variables dynamically.
The expression $$variable
could also be written as
${$variable} for added
clarity.

CNT 4714: PHP – Part 1 Page 92 Mark Llewellyn ©

print("</select>

Which operating system are you currently using?

<!-- create five radio buttons -->");

$counter = 0;

foreach ($systemlist as $currsystem) {
print("<input type = 'radio' name = 'os'

value = '$currsystem'");

if ($currsystem == $os) print("checked = 'checked'");
if (iserror && $counter == 0) print("checked = 'checked'");

print(" />$currsystem");

if ($counter == 2) print("
");
$counter++;

}

print("<!-- create a submit button -->

<input type = 'submit' name = 'submit' value = 'Register' />
</form></body></html>");

?>

dynamicForm2.php – page 6

CNT 4714: PHP – Part 1 Page 93 Mark Llewellyn ©

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!– formDatabase2.php -->
<!-- Program to query a database and send results to the client. -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head> <title>Database Search Results</title> </head>
<body style = "font-family: arial, sans-serif"

style = "background-color: #F0E68C" background=image1.jpg>
<?php

extract($_POST);
// build SELECT query
$query = "SELECT * FROM contacts";

// Connect to MySQL
if (!($database = mysqli_connect("localhost", "root", "root“, MailingList)))

die("Could not connect to database");
// query MailingList database

if (!($result = mysqli_query($database, $query))) {
print("Could not execute query!
");
die(mysqli_error());

}
?>
<h3 style = "color: blue">
Mailing List Contacts</h3>

formDatabase2.php – page 1

CNT 4714: PHP – Part 1 Page 94 Mark Llewellyn ©

<table border = "1" cellpadding = "3" cellspacing = "2"
style = "background-color: #ADD8E6">
<tr>

<td>ID</td>
<td>Last Name</td>
<td>First Name</td>
<td>E-mail Address</td>
<td>Phone Number</td>
<td>Magazine</td>
<td>Operating System</td>

</tr>
<?php

// fetch each record in result set
for ($counter = 0;

$row = mysqli_fetch_row($result);
$counter++){
// build table to display results
print("<tr>");
foreach ($row as $key => $value)

print("<td>$value</td>");
print("</tr>");

}
mysqli_close($database);

?>

</table>
</body>

</html>

formDatabase2.php – page 2

CNT 4714: PHP – Part 1 Page 95 Mark Llewellyn ©

Schema of the MailingList
database table contacts required
for the PHP database example to
work. Script is available on the
code page and shown on the next
page.

CNT 4714: PHP – Part 1 Page 96 Mark Llewellyn ©

